Atmospheric Transport Modeling

  • De Meutter, Camps, Delcloo, Deconninck, & Termonia (2016). On the capability to model the background and its uncertainty of CTBT-relevant radioxenon isotopes in Europe by using ensemble dispersion modeling. Journal of Environmental Radioactivity, 164, 280-290.
  • De Meutter, Camps, Delcloo, & Termonia (2017). Assessment of the announced North Korean nuclear test using long-range atmospheric transport and dispersion modelling. Scientific Reports, 7
  • De Meutter, Camps, Delcloo, & Termonia (2018). Backtracking Radioxenon in Europe Using Ensemble Transport and Dispersion Modelling. Air Pollution Modeling and Its Application Xxv, 147-150. DOI: 10.1007/978-3-319-57645-9_23
  • Eslinger, Bowyer, Achim, Chai, Deconninck, Freeman, et al. (2016). International challenge to predict the impact of radioxenon releases from medical isotope production on a comprehensive nuclear test ban treaty sampling station. Journal of Environmental Radioactivity, 157, 41-51.
  • Generoso, Achim, Morin, Gross, Le Petit, & Moulin (2018). Seasonal Variability of Xe-133 Global Atmospheric Background: Characterization and Implications for the International Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty. Journal of Geophysical Research-Atmospheres, 123(3), 1865-1882.
  • Johnson, Lowrey, Biegalski, & Haas (2015). Regional transport of radioxenon released from the Chalk River Laboratories medical isotope facility. Journal of Radioanalytical and Nuclear Chemistry, 305(1), 207-212.
  • Maurer, Bare, Kusmierczyk-Michulec, Crawford, Eslinger, Seibert, et al. (2018). International challenge to model the long-range transport of radioxenon released from medical isotope production to six Comprehensive Nuclear-Test-Ban Treaty monitoring stations. Journal of Environmental Radioactivity, 192, 667-686.
  • Stein, A.F., et al., NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bulletin of the American Meteorological Society, 2015. 96(12): p. 2059-2077.
Last Updated: September 2021