

Updates on IMS noble gas systems and IDC analysis software

Hakim Gheddou, IDC/IMS Team

International Data Centre

Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization, Provisional Technical Secretariat Vienna International Centre P.O. Box 1200, A-1400 Vienna, AUSTRIA

abdelhakim.gheddou@ctbto.org

WOSMIP VIII

June 20 - 23, 2022 | Stockholm, Sweden

The Workshop on Signatures of Man-Made Isotope Production (WOSMIP)

Introduction

Major achievements over the recent years in the area of CTBTO radionuclide monitoring technology:

- Significant progress in acceptance testing of next generation noble gas systems for the International Monitoring System (IMS).
- Development, testing and deployment of novel software applications for ensuring smooth integration of next generation noble gas systems into IDC operation.
- Integration of new analysis methods.
- Migrating Monte Carlo to open source.
- Modernization of NDC-in-a-Box package.

Next generation systems

Novel processing pipeline

RNToolkit

NDC-in-a-Box package

IDC products

Monte Carlo simulation

Summary

Next Generation systems (1/4) SAUNA III (Sweden)

Detection system	2 x Nal + plastic scintillator
Sampling cycle	6 h (4 samples/day)
Processing time	
Sample measurement time	6 h
Gas background measurement time	6 h

Status:

- 1st SAUNA III deployed at RN63 Q2 2021
- admitted into IDC operation Q3 2021

Next Generation systems (2/4) SPALAX NG (France)

Detection system	1 x HpGe + SiPIN
Sampling cycle	8 h (3 samples/day)
Processing time	
Sample measurement time	6.5 h
Gas background measurement time	not applicable

CTBTO acceptance testing:

- SPALAX NG accepted in Q3 2021

Next Generation systems (3/4) Xenon International (USA)

Detection system	4 x Nal + plastic scintillator
Sampling cycle	6 h (4 samples/day)
Processing time	
Sample measurement time	12 h
Gas background measurement time	12 h

Status:

 Xenon International completed phase 2 of CTBTO acceptance testing at RN33 – Q1 2022

Next Generation systems (4/4) MIKS (Russian Federation)

Detection system	2 x Nal + plastic scintillator
Sampling cycle	12 h (2 samples/day)
Processing time	
Sample measurement time	14 h
Gas background measurement time	6 h

Status:

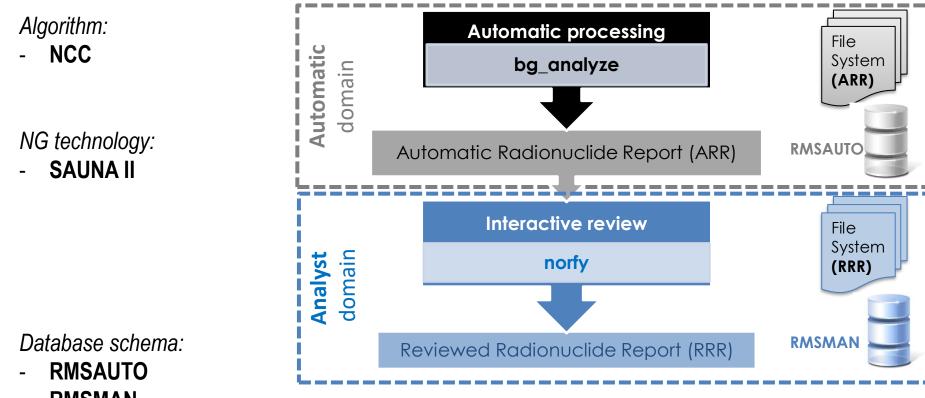
MIKS is under CTBTO acceptance testing

IMS noble gas systems in IDC operation

Out of the 40 IMS noble gas systems, **26 are currently certified and sending data to IDC operations**

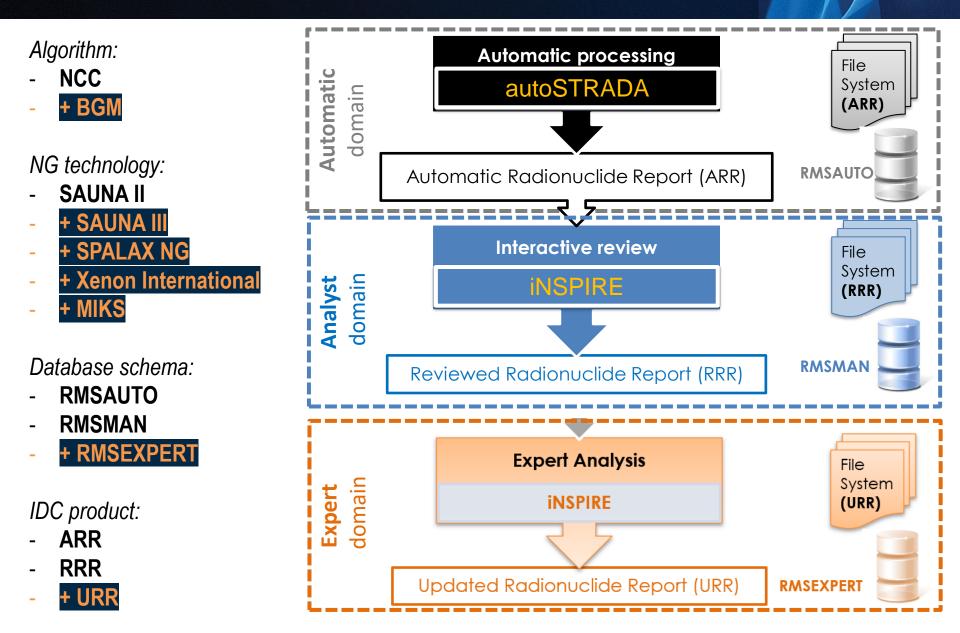
Latest: MRX43, April 2022

Operational technologies:


SAUNA II: 15 SAUNA III: 1

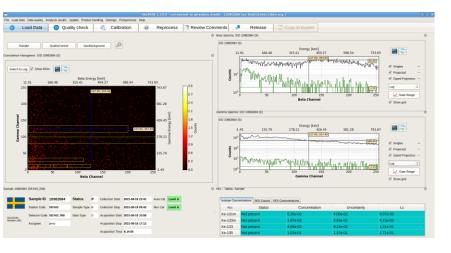
HPGe SPALAX:

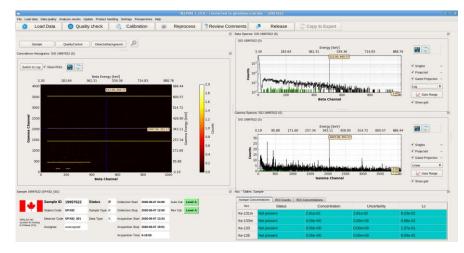
Former processing pipeline for noble gas


- RMSMAN

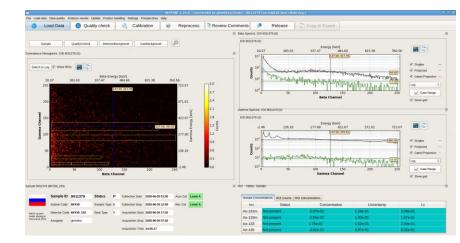
IDC product:

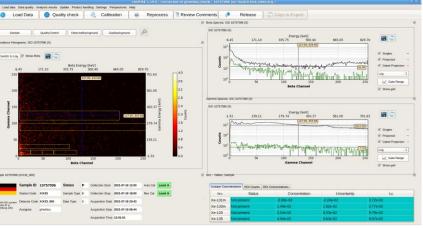
- ARR
- RRR


Novel processing pipeline for noble gas (since Aug. 2021)



autoSTRADA and iNSPIRE handle all noble gas systems


SAUNA II/III


SPALAX NG

MIKS

Xenon International

RNToolkit web-based application (1/5)

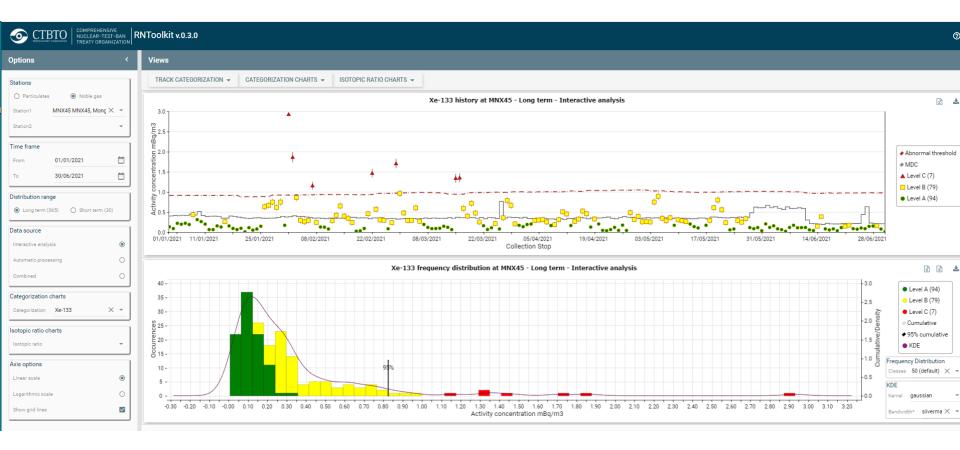
With the aim of **further empowering National Data Centres (CND)**, the IDC developed a novel web-based application, dubbed RNToolkit.

RNToolkit offers several options that the user can customize for **accommodating specific needs**, allowing **in-depth** spatial-temporal **analysis** of anthropogenic activity concentrations that might be released into the air by a nuclear test.

Main functionalities include **time development of detected nuclides, activity concentration, categorization parameters and isotopic ratios**. It also provides contextual **access to IDC products** for any sample. Among the key features, **detections at different stations can be compared** for any CTBT radionuclide.

Furthermore, RNToolkit allows **tracking of detections on IMS map** for targeted days and in animated mode for a time frame of interest.

In addition to CTBT verification related activities as a main application domain, RNToolkit also constitutes a powerful resource for the purposes of radiological impact assessment studies, namely in the case of a major nuclear accident.

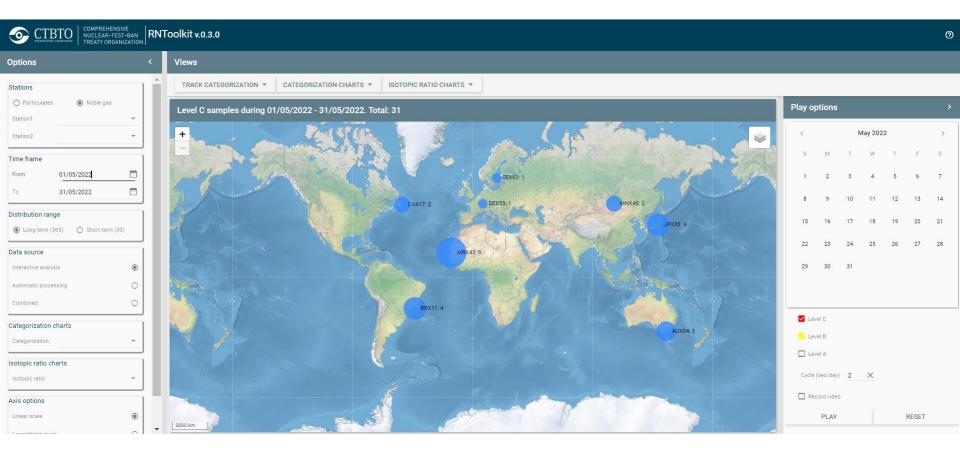

Status:

 Delivered to NDCs in March 2021
 Accessible with SSO credentials on <u>https://rntoolkit.ctbto.org</u>

RNToolkit web-based application (2/5)

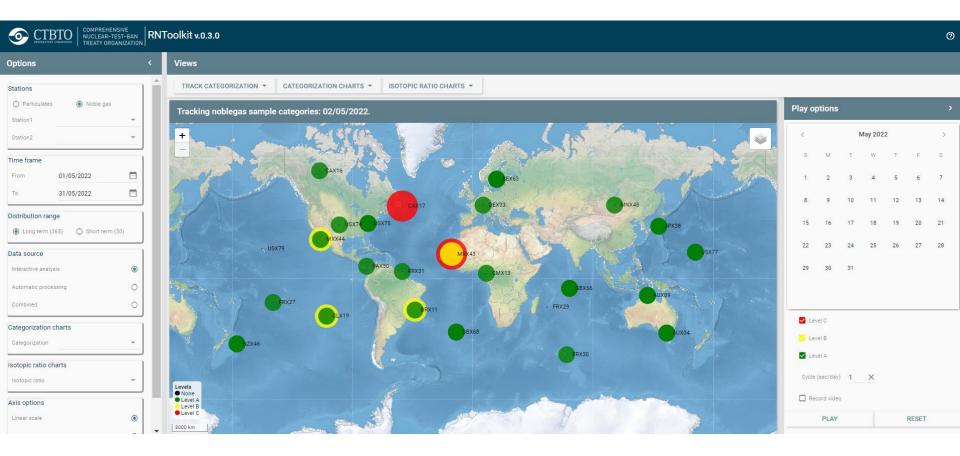
Time development of detected radioxenon isotopes, activity concentration, categorization parameters

Radioxenon isotopic ratios plots with screening flag threshold lines:


- Two isotopes (Xe-133m/Xe-131m, Xe-135/Xe-133, Xe-133m/Xe-133, Xe-133/Xe-131m)
- Four isotopes (Xe-133m/Xe-131m vs. Xe-135/Xe-133)

CTBETO COMPREHENSIVE NUCLEAR-TEST-BAN TREATY ORGANIZATION	NToolkit v.o.3.0	0
Options <	Views	
Stations O Particulates () Noble gas Station1 SEX63 Stockholm, Sw: X	TRACK CATEGORIZATION + CATEGORIZATION CHARTS + ISOTOPIC RATIO CHARTS + Xe-133m/Xe-133 history at SEX63 - Long term - Interactive analysis	ž 🕹
Station2 Image: Constraint of the state	0.30 0.25 0.00 0.05 0.05 0.00 0.05 0.05 0.00 0.05 0.05 0.00 0.05	Observations Screening flag threshold
Automatic processing O Combined O	4 Isotopes scatter plot history at SEX63 - Long term - Interactive analysis	2 🕹
Categorization charts Categorization Xe-133 X -		
Isotopic ratio charts Isotopic ratio Xe-133m/Xe-133 X -	ED14 14 14 14 10 10 10 10 10 10 10 10 10 10	 Screening flag threshold Observations
Axis options Linear scale		
Logarithmic scale O Show grid lines 🗹	0.0 1 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Xe-135/Xe-133	

RNToolkit web-based application (4/5)


Total number of Level C samples for (any) specified time period

RNToolkit web-based application (5/5)

Tacking of detections on IMS map for targeted days and in animated mode for a time frame of interest.

As recommended at INGE 2021, NG products (ARR, RRR, URR) template was enhanced for:

- Extending reported activity/concentration to non-detections (below LC)
- Specifying the analysis method (NCC, BGM)
- Reporting statistical and systematic uncertainty components, separately

Isotope categ							
	clide detected Abnormal_limit						
Xe-131m NO		A					
Xe-133m NO		A					
Xe-133 YE		В					
Xe-135 NO	0 8.40E-01	A					
Spectrum Cat	egory: B - Xenon detection within t	he typical range for the station					
Activity Sur	nmary and Minimum Detecta	ble Concentration for Xenon Isc	topes				
Radon counts	in Xenon sample: 97						
Xenon isoto	pes - Beta gamma matrix (BG	M) analysis method					
Nuclide	Half-Life	Activity (mE		Conc (mBq/m3)	RelErr (%)	LC (mBq/m3)	MDC (mBq/m3)
XE-131M	11.962 D	-1.54E-01	357.98	-1.35E-02	360.54	8.12E-02	1.79E-01
XE-133M	2.198 D	1.87E-01	210.49	1.88E-02	211.68	6.23E-02	1.44E-01
XE-133	5.2441 D	5.35E+00	21.92	4.89E-01	24.25	1.39E-01	3.02E-01
XE-135	9.143 H	-7.36E-01	125.39	-1.62E-01	126.02	3.44E-01	7.28E-01
Processing	Specific Parameters and Re	sults					
Beta gamma	matrix (BGM) analysis meth	bd					
ROI Net Cour	t Results						
ROI	Nuclide	Net Counts	Abs Net Error	LC	Efficiency	Abs Eff Error	
1	PB-214	37.92	3.57	18.41	N/A	N/A	
2	XE-135	-10.80	3.68	22.91	0.60	0.01	
3	XE-133	54.38	3.45	15.41	0.70	0.01	
4	XE-133	67.38	3.50	22.11	0.71	0.01	
5 6	XE-131M XE-133M	-2.23 2.59	2.82 2.34	13.35 8.57	0.67 0.67	0.01 0.01	
o ROI Limits (c		2.59	2.34	8.57	0.07	0.01	
ROI	BetaLow (channels)		BetaHigh (channels)	GammaLow @		GammaHigh (channels)	
1	1		198	114	adventora j	135	
2	1		255	78		100	
3	1		124	26		36	
4	1		138	8		16	
5	28		55	8		16	
6	64		93	8		16	
7	1		25	8		16	
8	96		138	8		16	
9	64		138	8		16	
10	1		55	8		16	
Processing	Parameters						
Risk level k:	1.6449						
Gas backgrou	nd used: NO						
Detector back	ground used: YES						
Interference c	orrections: YES						
Analysis meth	iod: BGM						

Enhancements to NG products (2/2)

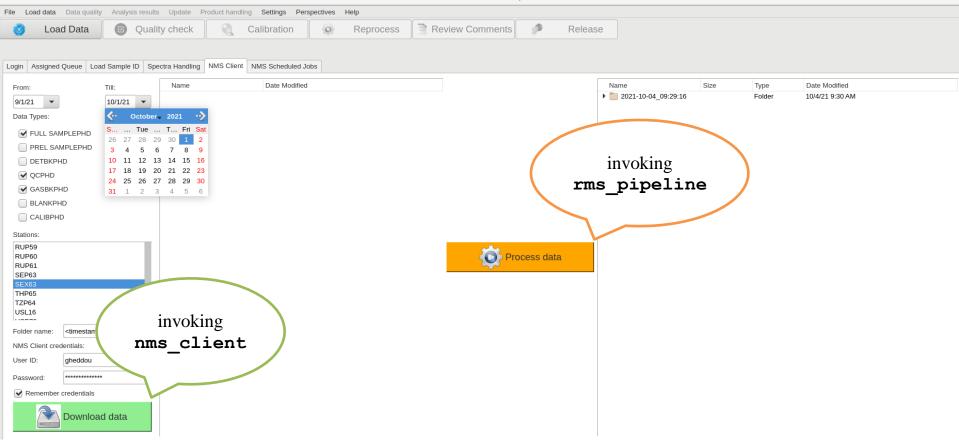
IDC Generated Report

In addition to initial html/xml format, **NG products** (ARR, RRR, URR) **will also be available in ascii format.** (this addresses feedback from NDCs).

Status:

- Deployed in IDC operation (late May 2022)
- VDMS supports the new format (the user can request html or ascii, depending on specific needs).
- SWP is being enhanced for supporting the new changes.

Reviewed Radion Noble Gas Versi		leport					
	Time: 20	05 10:36:28 21-11-02 17:33:1 cceipt of raw dat		ort cre	ation: 2 d	d 17 h 3	m 16.0 s
Sample Informat	ion						
Station ID: Authenticated:		Detector Code:	NZX46_00	5			
Station Locatio Detector Descri System Technolo	ption:	Noble Gas Chris Detector #5 SAUNA	tchurch,	New Ze	aland		
Sample Referenc Sample ID: Stable Xe Volum		46202111011111X 56953609 1.03 ml	Sample	Type:	Gas		
Collection Star Collection Stop Acquisition Sta Acquisition Sto	rt:	2021-11-01 11:1 2021-11-01 23:1 2021-11-02 06:2 2021-11-02 17:3	4:02 0:02	Proces	ng Time: sing Time ition Time	:	12 h 1 s 7 h 6 m 11 h 10 m 2
IDC Analysis Ge None '	meral Co	mments:b'None					
Measurement Cat							
Categorization	Legend						
Level A Level B Level C	Xenon d	pectrum - No Xen letection within bus Xenon detecti	the typi				
Isotope categor							
Isotope		e detected			(mBq/m3)	Category	,
Xe-131m Xe-133m	NO NO		9.91E-0 9.42E-0		A A		
Xe-133	NO		2.34E-0		A		
Xe-135	NO		1.04E+0		A		
Spectrum Catego	ry: None	•					
Activity Summar	y and Mi	nimum Detectable	Concent	ration	for Xenon	Isotopes	
Radon counts in	Xenon s	ample: 68					

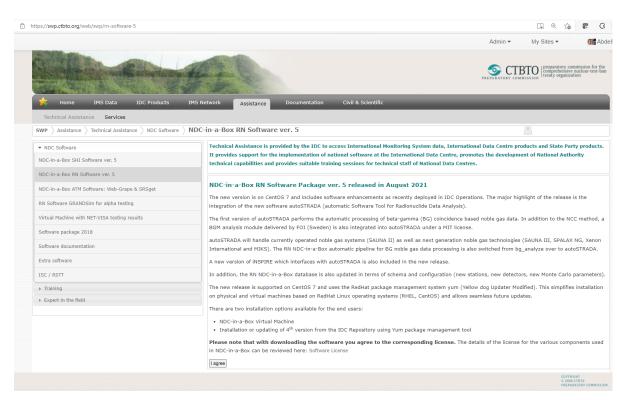


NDC-in-a-Box (1/2)

RN NDC-in-a-Box 4.0, Nov. 2020 Data downloading and processing can be performed from with dedicated functionalities on iNSPIRE GUI

iNSPIRE 2.0.0 - connected to rnanalyst@localhost/ndcrn

NDC-in-a-Box (2/2)


RN NDC-in-a-Box 5.0, Aug. 2021

- Integration of the new software autoSTRADA for automatic processing of betagamma (BG) coincidence based noble gas data
- A new version of iNSPIRE which interfaces with autoSTRADA is also included.

The new release is supported on **CentOS 7.**

Two options are available to end users for installing the new RN software package:

- NDC-in-a-Box Virtual Machine
- Installation from the IDC repository using yum package management tool

The software package can be downloaded as described on https://swp.ctbto.org/web/swp/rn-software-5

Integration of calibration validation tool (ongoing)

inspir	E 2.0.0dev - conr	nected to ghedd	ou@idcdev (o	n dlvw003.id	c.ctbto.org)					_
File Load data Data quality Analysis results Update Product handling Settings Perspectives Help										
🥝 Load Data 🕜 Quality check 🔍 Calibration 🙆 F	Reprocess	Review Com	ments	Rele	ase 🛛	Copy to E	xpert			
	I									
Calibration report for XIX33 003 - Generated 2021-11-24T07:24:25Z - Konqueror										
File Edit View Go Bookmarks Tools Settings Window Help									Coostro Llondling	
	▼ 🔣 tector Code	e Fro	n	То		Assignee			Spectra Handling	_
	X33_003	• 202	0-12-01	• 2021-0	01-31	• Any		- Assigned to me	Query	
Calibration report for XIX33_003	p Time [h]	Acq Start	Acq Time [h]	Transm Date	Sample Id	Auto Category	Category	Assignee	Load	
Generated 2021-11-24707:24:25.	(p 1000 [1]	2021-01-08 17:11	12	2021-01-09	54346616	-	-	unassigned	5 rows returned	
Table of Contents		2021-01-06 17:28	12	2021-01-07	54346617	-	-	unassigned		
		2021-01-27 17:12		2021-01-28	54346618			unassigned	bg_calval	Detect
1. Meta information 1.1. IMS data used here		2021-01-20 11:51							Cs-137	Load
1.2. Data acquisition 2. Gross ROI counts			21	2021-01-21	54346619	-	-	unassigned		LUdu
 Measurement data and peak fits 3.1. Xe-131m data and peak fits (using data supplied energy calibration) 		2021-01-29 17:10	1	2021-01-29	54403629	•	-	unassigned	Xe-131m: sid 54346616	Load
3.1.1. Beta			0.						Xe-131m Gas: sid 54346622	Load
3.1.2. Gamma 3.1.3. Beta-Gamma		0.7 -	0	mparison	to operation	or values		_	Xe-133: sid 54346617	Load
3.2. Xe-133 data and peak fits (using data supplied energy calibration) 3.2.1. Beta			-				•			
3.2.2. Gamma 3.2.3. Beta-Gamma					56	0.6 0.6	0.59 0.59		Xe-133 Gas	Load
3.3. Xe-133m data and peak fits (using data supplied energy calibration)			<u>.</u>	0.60	0.0				Xe-133m: sid 54346618	Load
3.3.1. Beta 3.3.2. Gamma		> 0 5							Xe-133m Gas: sid 54346624	Load
3.3.3. Beta-Gamma 3.4. Xe-135 data and peak fits (using data supplied energy calibration)		0.5 - 9 - 0.4 -								
3.4.1. Beta 3.4.2. Gamma		Licié							Xe-135: sid 54346619	Load
3.4.3. Beta-Gamma		Ja 0.4 -						IDC	Xe-135 Gas: sid 54346625	Load
3.5. Radon data and peak fits (using data supplied energy calibration) 3.5.1. Beta		ů						Operator	Rn: sid 54403629	Load
3.5.2. Gamma 3.5.3. Beta-Gamma		- 0.3 - eta- da - 0.2							Rn Gas: sid 54346621	Land
3.6. Gas background data for Xe-131m 3.6.1. Beta		eta-							RII Gas: siu 54346621	Load
3.6.2. Gamma		<u>ة 0.2</u>							Reference	Load
3.6.3. Beta-Gamma 3.7. Gas background data for Xe-133									HTML output	•
3.7.1. Beta 3.7.2. Gamma		0.1 -							Don't Use Reference	•
3.7.3. Beta-Gamma 3.8. Gas background data for Xe-133m									Skip Configuration Parameter	
3.8.1. Beta		0.0							Skip ROI Limits	
3.8.2. Gamma 3.8.3. Beta-Gamma			135 DI 3	133	Xe-133	ROI 5 Xe-131m	ROI 6 Xe-133m			
3.9. Gas background data for Xe-135 3.9.1. Beta		B	Xe-13 ROL	Xe-13	Xe	-13 R	-13 R		Execute	
3.9.2. Gamma 3.9.3. Beta-Gamma						×	×			
3.10. Gas background data for radon										
3.10.1. Beta 3.10.2. Gamma										
3.10.3. Beta-Gamma 4. Energy calibration			orte th	o diffo	ront c	alibrat	ion a	nnraacha	s as currently	,
4.1. Gamma energy calibration 4.1.1. Energy / Centroid pairs from fitted peaks	Ň								s as currently	y
4.1.2. Gamma energy calibration plot		used	for the	e differ	ent N	G tech	noloc	aies.		
4.2. Beta energy calibration 4.2.1. Beta energy calibration plot										
5. Energy resolution calibration 5.1. Gamma energy resolution calibration		> Will t	e use	d at ID	C for	validat	tion o	of operator	r calibration.	

Integration of sample metrics assessment tool (ongoing)

6	Station: JPX38 - Mozilla Firefox (on dlw084.idc.ctbto.org.)		- 0 (
Station: JPX38	X Station: MXX44 X +		
\leftrightarrow > C $$	(i) file:///home/rsmon/gheddou/metricsPrototype/JPX38_01-OCT-2021_01-NOV-2021_01-NOV-2021sampleMetricsReport.html	… አ	III\ 🗊 =

Data quality assessment report

Station: JPX38

Collection stop period: 01-OCT-2021 - 01-NOV-2021

by gheddou on 09 November 2021 01:42PM

Sample metrics matrix

Supports the different NG technologies.

- Checks sample metrics against system specific thresholds for certification/ data availability.
- Will be used at IDC for new stations/detectors testing.

SRID	DETECTOR_CODE	COLL_STOP	ACQ_START	COLL_TIME, h	ACQ_TIME, h	REPORTING_TIME, h	XE_VOLUME, ml	XE133_MDC, mBq/m3	XE_YIELD	RADON
38202109301811X	JPX38_004	01-OCT-2021 06:37	01-OCT-2021 13:45	12	11.17	30.3	1.07	0.33	0.92	99
38202110010611X	JPX38_003	01-OCT-2021 18:37	02-OCT-2021 01:45	12	11.17	30.3	1.07	0.33	0.92	129
38202110011811X	JPX38_004	02-OCT-2021 06:37	02-OCT-2021 13:45	12	11.17	30.3	1.07	0.33	0.91	115
38202110020611X	JPX38_003	02-OCT-2021 18:37	03-OCT-2021 01:45	12	11.17	30.3	1.07	0.32	0.92	120
38202110021811X	JPX38_004	03-OCT-2021 06:37	03-OCT-2021 13:45	12	11.17	30.3	1.07	0.34	0.91	128
38202110030611X	JPX38_003	03-OCT-2021 18:37	04-OCT-2021 06:21	12	6.58	30.3	1.07	0.37	0.91	69
38202110031811X	JPX38_004	04-OCT-2021 06:37	04-OCT-2021 13:45	12	11.17	30.3	1.08	0.34	0.92	115
38202110040611X	JPX38_003	04-OCT-2021 18:37	05-OCT-2021 01:45	12	11.17	30.3	1.08	0.33	0.92	133
25 20 4 15 15		•	T. 5 T. 5 T. 4 T. 4 T. E T. E T. e 3 				5 4 4 8 3 WDC, mBq, m-3 2 2 2		••	
	10 20 30 sample#	• 40 50 60		0 10 2	0 30 40 sample#	5 0 60 70		10 20 30 40 sample#	50	60 70

GRANDSim (1/5) The project

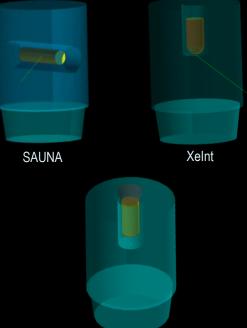
Background

The IDC was operating a Monte Carlo simulation tool **limited to** HPGe gamma detector systems in use at IMS **particulate stations**.

The tool called **VGSL** (Virtual Gamma Spectroscopy Laboratory) **uses MCNP license** dependent code.

Therefore the **IDC could not distribute VGSL** as part of the NDCin-a-Box software package.

GRANDSim (Geant 4 Radionuclide Detector Simulation) **is a novel IDC software for radionuclide detectors in use at IMS**.


Specific objectives:

- To complete the migration of RN software tools to open source (license free).
- To further enhance the integration level into the RN processing pipeline for by reading the simulation input from DOTS and writing the output into GARDS database.
- To progressively extend PTS simulation capabilities to beta-gamma coincidence-based detection technologies of IMS noble gas systems. This will include upcoming systems making use of high-resolution beta and/or gamma detectors.
- GRANDSim is intended for internal use at the PTS and distribution to NDCs as part of the (license free) NDC-in-a-Box software package.

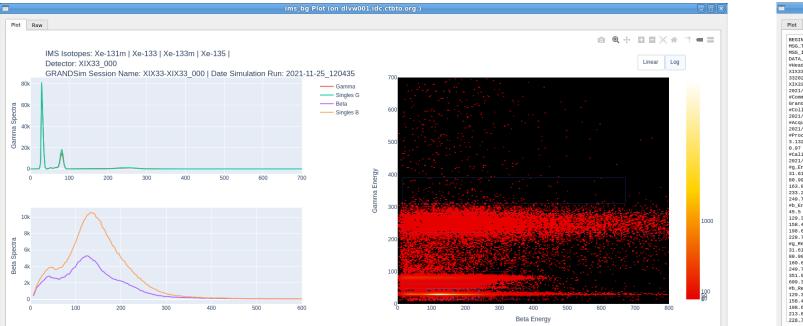
GRANDSim (2/5) Extension to noble gas (ongoing)

GRANDSim (phase 2 of the project):

GRANDSim is being extended to beta gamma coincidence-based detectors of all (current, new and next generations) noble gas technologies): SAUNA II/III, SPALAX NG, Xenon International and MIKS

	ad Input Beta	a-Gamma Efficie	ency S	pectrum Simulat:	101	n Pa	rse in	to Database		
Sele	ect Isotope(s) & Activit	y Concentration								
	b-214					Isotope	Activity		Mode	Bean
	ie-131m ie-133				1	Xe-131m	1	Activity at Acquisition Start	Stop at ground state of first new	Z 42573
	e-133m ure Xe-133m				2	Xe-133	1	Activity at Acquisition Start	Stop at ground state of first new	Z 41804
X	e-135 ie-125				Н					
	le-125				3	Xe-133m	1	Activity at Acquisition Start	Stop at ground state of first new	2 39966
					4		1	Activity at Acquisition Start	Stop at ground state of first new	Z 28363
	Activity (Bq) Mode	1 Activity at Acquisition Start		und state of first new Z		Ŧ				
	Airflow (m3/h)	1.00	\$							
	Sampling Time	2021-11-25 00:00:00	\$ Start	2021-11-25 06:00:00 \$	En	d e	5.00	Hours		
	Processing Time	2021-11-26 00:00:00	\$ Start	2021-11-26 04:00:00 🖨	En	d 4	4.00	Hours		
	Processing Time Acquisition Time	2021-11-26 00:00:00 2021-11-26 07:00:00		2021-11-26 04:00:00 \$ 2021-11-26 19:00:00 \$			4.00 12.00	HoursHours		
	-									
	Acquisition Time MS Comment	2021-11-26 07:00:00	Start							
	Acquisition Time MS Comment	2021-11-26 07:00:00	Start			t b				
	Acquisition Time MS Comment	2021-11-26 07:00:00	Start			t b				
	Acquisition Time MS Comment	2021-11-26 07:00:00	Start			t b				
	Acquisition Time MS Comment	2021-11-26 07:00:00	Start			t b				

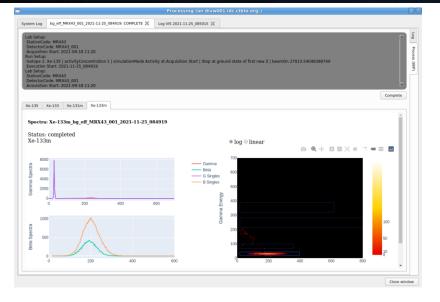
MIKS

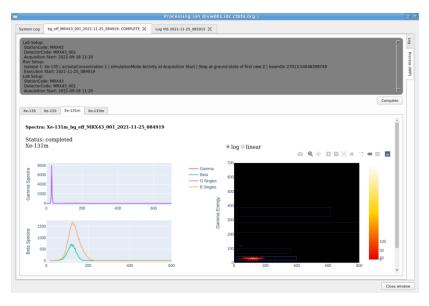

GRANDSim (3/5) Spectra simulation

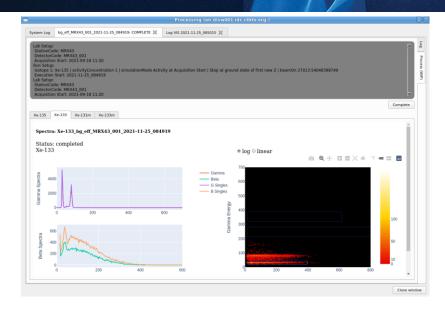
Simulation input:

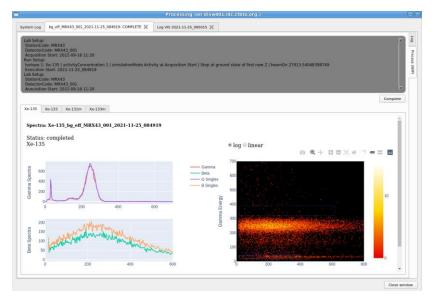
- isotope(s) + activity(ies)
- Collection
- Processing
- Acquisition

Simulation output:


- Graphical
- IMS 2.0 format




Plot Rav	v		
BEGIN IMS			
MSG_TYPE			
MSG_ID 00		-	
DATA_TYPE		D	
#Header 3			
XIX33 XIX		Disk	FULL
332021112			
		26-19:00:00 0	
2021/11/2	6 19:00:0	0	
#Comment GrandSim			
#Collecti		/ /	
		0.0 2021/11/25	06:00:00.0 6
#Acquisit			10000
		0.0 43200	43200
#Processi			
3.132 0.97	0.3132		
#Calibrat			
2021/11/2		9	
#g_Energy			0.0
31.61		2.8566	0.0
80.99		9.9421	
163.93		8.6398 2.614	0.0002
233.22		8.3388	0.0002
	6	0.3300	0.0
#b_Energy		44 7044	
45.5		11.7911	0.0
129.37 158.45		37.1242 45.9073	0.0001
158.45		58,0538	0.0001
228.73		67.1366	0.0004
#g_Resolu		07.1300	0.0021
#g_Resolu 31.61		.3009	0.1234
80.99		.0.4298	0.2769
160.6		.6.5016	0.2709
249.77		3.3021	0.1103
351.9		1.0914	0.2
609.32		0.7239	0.2
#b_Resolu		0.7239	0.2
		0.001	
129.37		2.901	4.114
158.48		5.2208 0.8596	3.613 3.044
198.66 213.81			3.044
		1.0877	1.021 3.229
228.74	4	8.9151	3.229



GRANDSim (4/5) Detection efficiency check

GRANDSim will offer a wide range of potential applications:

- Implementing Standard Spectra Method (SSM)
- Testing new analysis methods
- Calibration in efficiency and interference ratios
- Simulating complex mixtures of CTBT relevant isotopes
- Investigating effects from non-CTBT relevant isotopes (Xe-125, Xe-127)
- Detector optimization
- NDC Preparedness Exercises (NPE)
- Proficiency Test Exercises (PTE)
- OSI exercises
- Training

Significant progress was achieved in CTBTO acceptance testing of

Summary

next generation noble gas systems:

- First SAUNA III deployed at IMS station
- SPALAX NG accepted
- Xenon International completed phase 2
- MIKS testing is ongoing

The IDC pipeline for noble gas was completely reengineered with novel software applications:

- **autoSTRADA** for automatic processing
- **iNSPIRE** for interactive analysis

The new analysis pipeline **handles both current, new and next generation technologies** and **supports parallel analysis methods** (currently: NCC, BGM).

The new software was **deployed in IDC operations and delivered to NDCs in a timely manner**.

Thank you !