

NIOWAVE'S CLOSED LOOP FUEL CYCLE FOR DOMESTIC PRODUCTION OF MO-99 AND OTHER ISOTOPES

PRESENTED AT WOSMIP CONFERENCE MAY 27, 2021

NIOWAVE: <u>NATHAN JOHNSON</u>, TERRY GRIMM, MITCHELL HEMESATH, CHRISTINE KRIZMANICH, NICOLAS LUCIANI, WILLIAM PETERS, KRISTIN SHANNON, MILAN STIKA, ROBERT WAHLEN

PNNL: JIM HAYES, JIM BOWEN, JUDAH FIRESE, ANDREW RITZMAN, LEAH ARRIGO, DAVID STEPHENSON.

This document contains Niowave Proprietary Data. Not for release without prior written permission from Niowave.

OUTLINE

- Niowave Background
 - o Medical isotope company
 - Program overview
- o Mo-99 Radiochemistry
 - o Fuel Cycle
 - o Scale-Up Plan
- o Mo-99 Program Review
 - o Uranium Target Assembly
 - Dissolution & Gas Extraction
 - o UREX

NIOWAVE Accelerating Your Particles

- o Mo-99 Chemistry
- o Other Isotopes
- o Uranium Recovery
- Target Fabrication
- o Emissions
 - Niowave Emissions strategy
 - o Emissions Monitoring

NIOWAVE BACKGROUND

NIOWAVE, INC.

- Spun off from MSU's National Superconducting Cyclotron Laboratory in 2005
- Began building accelerator components for US and international laboratories
- Built up infrastructure and know-how to operate superconducting linacs.
- Now focused on using accelerators to produce radioisotopes for nuclear medicine

Lansing, Michigan Headquarters

PROGRAM OVERVIEW

Mo-99 Program Superconducting Electron Linac Uranium Fuel Kr, Xe Mo-99 + FP 10 kCi/week

Reactor Program

Ac-225 Program Rn-222 Superconducting Electron Linac Ra-226 Solution Ac-225 1 Ci/wk

THERAPEUTIC $\alpha \& \beta EMITTERS$

Niowave manufactures radioisotopes from radium and uranium

Pb-214

27 m

Pm-149

6

MO-99 PROGRAM PHASE CHART

Category			Phase 1	Phase 2	Phase 3	
Production Level			Demo	Pilot	Commercial	
LEU Invento		Total On-Site	1.8 kgU	4.5 kgU	100 kgU	
	ory	Core	1.6 kgU	4.5 kgU	24 kgU	28 kgU
k _{eff}			0.43	0.62	0.95	0.99
Accelerator			5 MeV 310 W (Be)	15 MeV 26 kW 20 MeV 10 kW	40 MeV 646 kW	40 MeV 123 kW
Fission Power			23 mW	230 W	230 kW	
Activity Produced ¹			1 mCi batches	10 Ci/week	10 kCi/week	
Radiochemicals Produced			Mo-99 → Tc-99m I-131, Xe-133	Sr-89, Y-91, Ce-141, Nd-147, Pm-149	Sb-127→Te-127 Ba-140→La-140 Ce-143→Pr-143	
NRC	License Type		Materials	Materials	TBD	
	Regulatory Process ²		10 CFR 30, 70	10 CFR 30, 70	10 CFR 30, 51, 70 (50 TBD)	
FDA Regulatory Process			-	Facility Registered	DMF ³ Filed / Referenced	
Location			HQ	HQ / Airport	Airport Campus	
Completion Date			Dec 2018 COMPLETE	Dec 2021	Dec 2023	

¹10 kCi/week Mo-99 EOB = 1,550 6 day Ci/week Mo-99 ²Including 10 CFR 20, 3X, 40, 7X ³Drug Master File 01/11/2021

MO-99 RADIOCHEMISTRY

SCALE- UP TO COMMERCIAL PRODUCTION

MO-99 PROGRAM RADIOCHEMISTRY

RADIOCHEMISTRY SCALE UP PLAN

GOAL-MO-99 PHASE 2 RADIOCHEMISTRY

- NIOWAVE Accelerating Your Particles
- The goal of this work is to produce one fully integrated model isotope processing line for the Mo-99 program which performs the entire fuel cycle as well as Mo-99 and other fission product purification, packaging, and assay for sale.
 - Capacity: 10 kgU/week
 - Throughput: 1 kgU/week
 - Activity: 100 mCi/week Mo-99 and other FPs

я.

12

CURRENT STATUS & NEXT STEPS

URANIUM TARGET ASSEMBLY

URANIUM TARGET ASSEMBLY

- The Uranium Target Assembly (UTA) is a subcritical assembly, open-pool type LWR
 - Electron linac driven
 - Photoneutron source (LBE)
 - Uranium oxide fuel
 - Light water cooled, moderated, reflected

14

UTA-2 CURRENT DESIGN

		rticles	
	I	Your Pa	
		erating	
	2	Accel	
1	*	R)	

Neutron Source						
Electron beam energy (MeV)	15	20				
Electron beam power (kW)	17.3	7.0				
Neutron converter	Lead-Bism	Lead-Bismuth Eutectic				
Neutron source $\left(\frac{n}{s}\right)$	5.5 >	5.5×10^{12}				
Mechanical						
Fuel loading - LEU (kgU)	7.0	7.000				
Fuel loading - NU (kgU)	11.	11.577				
²³⁵ U enrichment (wt%)	9.	9.75				
²³⁵ U fuel loading in LEU (gU)	68	682.5				
U_3O_8 fuel density $\left(\frac{g}{cm^3}\right)$	4.	4.15				
Fuel type	U3	U ₃ O ₈				
Fuel pellet radius (cm)	0.	0.65				
Cladding type	Al 6	A1 6061				
Cladding OD and Wall Thickness (cn	n) 1.5875 ar	1.5875 and 0.1245				
Number of fuel rods LEU	5	52				
Number of fuel rods NU	8	86				
Lattice type	Squ	Square				
Core pitch (cm)	2	2.9				
Fuel height (cm)	28.	28.818				
Neutronics						
Fission energy per electron $\left(\frac{J}{e}\right)$	3.187×10^{-14}	$1.056 imes 10^{-13}$				
k _{eff}	k_{eff} 0.70342 ± 0.00014					
Thermal flux level $\left(\frac{n}{cm^2 \cdot s}\right)$	1.5 ×	$1.5 imes 10^{10}$				
Fission power (W)	2:	230				
Fraction of fission power in NU/LEU	J 0.12	0.12/0.88				
Fuel burnup per cycle (% and $\frac{MWD_t}{MTHM}$	$()$ 1.0×10^{-5}	1.0×10^{-5} and 0.088				
Isotope Production						
⁹⁹ Mo Activity $\left(\frac{Ci}{wk}\right)$	1	10				
Irradiation cycle length (days)		7				

15

OPERATIONAL SOURCE & URANIUM TARGET ASSEMBLY

Neutron source Install

Operational & uranium Target Assembly

Quartz Converter Model

DISSOLUTION & GASEXTRACTION

DISSOLUTION & GAS EXTRACTION

Uranium dissolution:

o Dissolve in nitric acid at room temperature under vacuum

Xenon capture:

- o Liquid nitrogen cooled SS cup
- \circ $\,$ 80 % yield for sale $\,$
- \circ No iodine observed

lodine capture:

- o 6 M NaOH bubbler, 100 °C uranyl nitrate, 3-hour capture time.
- o 50 % yield for sale
- o Residual I captured on silver zeolite filter or remaining in solution.

OPERATED BY SAVANNAH RIVER NUCLEAR SOLUTIONS

Total LEU Inventory = 100 kgU

NIOWAVE Accelerating Your Particles

UREX

Current Status:

- Designed & fabricated centrifugal contactor system to separate fission products from uranium
- Successfully tested a 12-stage centrifugal contactor bank with irradiated uranium
- Uranium and fission product extractions are benchmarked with AMUSE modeling provided by Argonne
- Solvent clean-up and recycling testing in progress under guidance from SRNL

Next Steps:

Updated 9/22/2020

- Implementation of shielding for handling higher activities
- o Throughput and longevity testing

MO-99 CHEMISTRY

MO-99 CHEMISTRY

Current Status:

- Mo-99 extracted from a UREX raffinate using a novel liquid liquid extraction technique, then purified and concentrated using an anion exchange column
- Process demonstrated at the bench top scale with irradiated uranium using separatory funnels
- o Initial testing in centrifugal contactors is ongoing

Next Steps:

• Testing of MoLLE process in centrifugal contactors using irradiated uranium

Publication Pending: M. Alex Brown, et.al., "Recovery of High Specific Activity Molybdenum-99 from Accelerator-Induced Fission on Low-Enriched Uranium for Technetium-99m Generators." Scientific Reports

22

Accelerating Your Particles

OTHER ISOTOPES

OTHER ISOTOPES

Current Focus

Ce/Pr, Ln Group, Sr/Y

On the Docket

Ba/La, Ln Individual (Nd, Pm, Sm), Ru, Rh, Sb, Te, Zr/Nb

Other Isotopes:

- o Extraction of isotopes from MoLLE raffinate
 - Lanthanides: Group separation from MoLLE raffinate followed by individual isolation
 - o Ce: electrochemical oxidation followed by LLE
 - o Sr: Separation and purification from MoLLE raffinate

URANIUM RECOVERY

URANIUM RECOVERY

Current Status:

- \circ Uranyl nitrate is distilled then precipitated using oxalic acid. Uranyl oxalate is filtered then calcined to produce U₃O_{8.}
- \circ Successfully recovered U₃O₈ from uranyl nitrate after UREX at 40 gU scale.

Next Steps:

NIOWAVE Accelerating Your Particles

- Optimize operational steps to increase throughput
- Size equipment for kilogram batches of uranium

TARGET FABRICATION

Target Fabrication:

- Processed and pressed powder into pellets at high quality.
- o 60 % theoretical density green pellets.
- o Sieving
 - ZrO grinding media used to produce 0.2-20 μm mesh size powder
- Accelerating Your Particles
- o Pressing
 - 5 gU pellet produced using a 3 ton force with steric acid lubrication

EMISSIONS

130 18

EMISSIONS FROM ISOTOPE PRODUCTION AT NIOWAVE

- Iodine and Xenon are highest activity & most restrictive isotopes that will come out of isotope production (fission).
- \circ lodine
 - <u>Primary:</u> sparge uranyl nitrate and capture in NaOH bubbler
 - o <u>Abatement</u>: silver zeolite trap

○ Xenon:

- o <u>Primary:</u> liquid nitrogen cooled coil
- <u>Abatement:</u> liquid nitrogen cooled (-120
 C) charcoal trap.
- o <u>Detection:</u> Xe stack monitor (HPGe)

lodine:

Xenon:

Insert picture of xenon abatement trap here!

STACK MONITOR

- PNNL funded Mirion stack monitor installed at Niowave in Q1 2021.
- Successfully delivered, installed, and connected to the stack.
- System will detect emissions during pilot scale operations of Mo-99 production and separation starting in Q4 2021.

THANK YOU – QUESTIONS?

130 18

PRESENTER: ROBERT WAHLEN Email: wahlen@niowaveinc.com